光纖通信是現代信息傳輸的重要方式之一。它具有容量大、中繼距離長、保密性好、不受電磁干擾和節省銅材等優點。
光纖傳輸基于可用光在兩種介質界面發生全反射的原理。突變型光纖,n1為纖芯介質的折射率,n2為包層介質的折射率,n1大于n2,進入纖芯的光到達纖芯與包層交界面(簡稱芯-包界面)時的入射角大于全反射臨界角θc時,就能發生全反射而無光能量透出纖芯,入射光就能在界面經無數次全反射向前傳輸。原來
當光纖彎曲時,界面法線轉向,入射角度小,因此一部分光線的入射角度變得小于θc而不能全反射。但原來入射角較大的那些光線仍可全反射,所以光纖彎曲時光仍能傳輸,但將引起能量損耗。通常,彎曲半徑大于50~100毫米時,其損耗可忽略不計。微小的彎曲則將造成嚴重的“微彎損耗”。
光纜結構
按照被覆光纖在光纜中所處的狀態,光纜有緊結構與松結構兩類。骨架型光纜是一種典型的松結構。光纖埋在骨架外周螺旋槽中,有活動余地。這種光纜隔離外力和防止微彎損耗的特性較好。圖2b的絞合型光纜當使用緊包光纖時是一種典型的緊結構,被覆光纖被緊包于纜結構中,但絞合型光纜使用松包光纖時,由于光纖在二次被覆塑料管中可以活動,仍屬松結構。絞合型光纜的成纜工藝較為簡單,性能良好。此外,還有帶狀光纜、單芯光纜等結構類型。
各種光纜中都有增強件,用以承載拉力。它由具有高彈性模量的高強度材料制成,常用的有鋼絲、高強度玻璃纖維和高模量合成纖維芳綸等。增強件使光纜在使用應力下只產生極低的伸長形變(例如小于0.5%),以保護光纖免受應力或只承受極低的應力,以防光纖斷裂。
光纜的護套結構和材料視使用環境和要求而定,與同樣使用條件下的電纜基本相同。按照光纜的使用環境分,有架空光纜、直埋光纜、海底光纜、野戰光纜等。
光纖分類
突變型
纖芯部分折射率不變,而在芯-包界面折射率突變。纖芯中光線軌跡呈鋸齒形折線。這種光纖模間色散大,帶寬只有幾十兆赫·公里。常做成大芯徑,大數值孔徑(例如芯徑為100微米,NA為0.30)光纖,以提高與光源的耦合效率,適用于短距離、小容量的通信系統。
單模光纖
當光纖的歸一化頻率ν<2.41時,光纖中只允許單一模式(基模)傳輸,就成為單模光纖。根據式(2),這種光纖芯徑和數值孔徑必然很小,一般芯徑只有數微米,因此連接耦合難度大。由于是單模傳輸,消除了模間色散,在波長1.3微米附近材料色散又趨近于零,因此帶寬極大(可達數百吉赫·公里)。單模光纖被視為今后大容量長途干線通信的主要傳輸線。
玻璃光纖
組成光纖的玻璃成分以SiO2為主,約占百分之幾十,此外還含有堿金屬、堿土金屬、鉛硼等的氧化物。它的特點是熔點低(1400攝氏度以下),可用傳統的坩堝法拉絲,適于制做大芯徑、大數值孔徑光纖。這種光纖尚處于研制階段,故應用不多。